Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.

Identifieur interne : 001A05 ( Main/Exploration ); précédent : 001A04; suivant : 001A06

Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.

Auteurs : Kamesh C. Regmi [États-Unis] ; Shangji Zhang [États-Unis] ; Roberto A. Gaxiola [États-Unis]

Source :

RBID : pubmed:26614751

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H(+)-PPases; OVPs) in the sieve element-companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms. Additionally, it was contended that the presence of sucrose synthase in the SE-CC complexes would be consistent with an apoplasmic sucrose loading route in rice.

METHODS

Conventional chemical fixation methods were used for immunohistochemical localization of H(+)-PPases and sucrose synthase in rice and arabidopsis at the light microscopy level, while ultrastructural immunogold labelling of H(+)-PPases and sucrose synthase was performed on high-pressure frozen source leaves of rice.

KEY RESULTS

Using immunogold labelling, it was found that OVPs predominantly localize at the plasma membrane (PM) of the SE-CC complexes in rice source leaf minor veins, while in the root meristematic cells, OVPs preferentially localize at the vacuoles. The PM specificity of OPVs in the SE-CC complexes was deemed to support apoplasmic loading in the rice phloem. Further backing for this interpretation came from the sucrose synthase-specific immunogold labelling at the SE-CC complexes of rice source leaves.

CONCLUSION

These findings are consistent with the idea that, in the same way as in arabidopsis and a majority of grasses, sucrose is actively loaded into the SE-CC complexes of rice leaves using an apoplasmic step.


DOI: 10.1093/aob/mcv174
PubMed: 26614751
PubMed Central: PMC4724047


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.</title>
<author>
<name sortKey="Regmi, Kamesh C" sort="Regmi, Kamesh C" uniqKey="Regmi K" first="Kamesh C" last="Regmi">Kamesh C. Regmi</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shangji" sort="Zhang, Shangji" uniqKey="Zhang S" first="Shangji" last="Zhang">Shangji Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaxiola, Roberto A" sort="Gaxiola, Roberto A" uniqKey="Gaxiola R" first="Roberto A" last="Gaxiola">Roberto A. Gaxiola</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA roberto.gaxiola@asu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26614751</idno>
<idno type="pmid">26614751</idno>
<idno type="doi">10.1093/aob/mcv174</idno>
<idno type="pmc">PMC4724047</idno>
<idno type="wicri:Area/Main/Corpus">001A15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A15</idno>
<idno type="wicri:Area/Main/Curation">001A15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A15</idno>
<idno type="wicri:Area/Main/Exploration">001A15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.</title>
<author>
<name sortKey="Regmi, Kamesh C" sort="Regmi, Kamesh C" uniqKey="Regmi K" first="Kamesh C" last="Regmi">Kamesh C. Regmi</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shangji" sort="Zhang, Shangji" uniqKey="Zhang S" first="Shangji" last="Zhang">Shangji Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaxiola, Roberto A" sort="Gaxiola, Roberto A" uniqKey="Gaxiola R" first="Roberto A" last="Gaxiola">Roberto A. Gaxiola</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA roberto.gaxiola@asu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Bryopsida (metabolism)</term>
<term>Cell Membrane (metabolism)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Immunohistochemistry (MeSH)</term>
<term>Inorganic Pyrophosphatase (metabolism)</term>
<term>Meristem (cytology)</term>
<term>Meristem (metabolism)</term>
<term>Oryza (metabolism)</term>
<term>Phloem (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Vacuoles (metabolism)</term>
<term>Zea mays (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (métabolisme)</term>
<term>Bryopsida (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Immunohistochimie (MeSH)</term>
<term>Inorganic Pyrophosphatase (métabolisme)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Méristème (cytologie)</term>
<term>Méristème (métabolisme)</term>
<term>Oryza (métabolisme)</term>
<term>Phloème (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Vacuoles (métabolisme)</term>
<term>Zea mays (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glucosyltransferases</term>
<term>Inorganic Pyrophosphatase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Méristème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Meristem</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Cell Membrane</term>
<term>Meristem</term>
<term>Oryza</term>
<term>Phloem</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Vacuoles</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Feuilles de plante</term>
<term>Glucosyltransferases</term>
<term>Inorganic Pyrophosphatase</term>
<term>Membrane cellulaire</term>
<term>Méristème</term>
<term>Oryza</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Vacuoles</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Immunohistochemistry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunohistochimie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H(+)-PPases; OVPs) in the sieve element-companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms. Additionally, it was contended that the presence of sucrose synthase in the SE-CC complexes would be consistent with an apoplasmic sucrose loading route in rice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Conventional chemical fixation methods were used for immunohistochemical localization of H(+)-PPases and sucrose synthase in rice and arabidopsis at the light microscopy level, while ultrastructural immunogold labelling of H(+)-PPases and sucrose synthase was performed on high-pressure frozen source leaves of rice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>Using immunogold labelling, it was found that OVPs predominantly localize at the plasma membrane (PM) of the SE-CC complexes in rice source leaf minor veins, while in the root meristematic cells, OVPs preferentially localize at the vacuoles. The PM specificity of OPVs in the SE-CC complexes was deemed to support apoplasmic loading in the rice phloem. Further backing for this interpretation came from the sucrose synthase-specific immunogold labelling at the SE-CC complexes of rice source leaves.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>These findings are consistent with the idea that, in the same way as in arabidopsis and a majority of grasses, sucrose is actively loaded into the SE-CC complexes of rice leaves using an apoplasmic step.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26614751</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.</ArticleTitle>
<Pagination>
<MedlinePgn>257-68</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcv174</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H(+)-PPases; OVPs) in the sieve element-companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms. Additionally, it was contended that the presence of sucrose synthase in the SE-CC complexes would be consistent with an apoplasmic sucrose loading route in rice.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Conventional chemical fixation methods were used for immunohistochemical localization of H(+)-PPases and sucrose synthase in rice and arabidopsis at the light microscopy level, while ultrastructural immunogold labelling of H(+)-PPases and sucrose synthase was performed on high-pressure frozen source leaves of rice.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">Using immunogold labelling, it was found that OVPs predominantly localize at the plasma membrane (PM) of the SE-CC complexes in rice source leaf minor veins, while in the root meristematic cells, OVPs preferentially localize at the vacuoles. The PM specificity of OPVs in the SE-CC complexes was deemed to support apoplasmic loading in the rice phloem. Further backing for this interpretation came from the sucrose synthase-specific immunogold labelling at the SE-CC complexes of rice source leaves.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">These findings are consistent with the idea that, in the same way as in arabidopsis and a majority of grasses, sucrose is actively loaded into the SE-CC complexes of rice leaves using an apoplasmic step.</AbstractText>
<CopyrightInformation>© The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Regmi</LastName>
<ForeName>Kamesh C</ForeName>
<Initials>KC</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shangji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaxiola</LastName>
<ForeName>Roberto A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA roberto.gaxiola@asu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.13</RegistryNumber>
<NameOfSubstance UI="C022699">sucrose synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.1</RegistryNumber>
<NameOfSubstance UI="C505048">AVP1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.1</RegistryNumber>
<NameOfSubstance UI="D043564">Inorganic Pyrophosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019068" MajorTopicYN="N">Bryopsida</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043564" MajorTopicYN="N">Inorganic Pyrophosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Rice</Keyword>
<Keyword MajorTopicYN="N">apoplasmic loading</Keyword>
<Keyword MajorTopicYN="N">phloem loading</Keyword>
<Keyword MajorTopicYN="N">proton pyrophosphatase</Keyword>
<Keyword MajorTopicYN="N">sieve element–companion cell complex</Keyword>
<Keyword MajorTopicYN="N">sucrose synthase</Keyword>
<Keyword MajorTopicYN="N">symplasmic loading</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26614751</ArticleId>
<ArticleId IdType="pii">mcv174</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcv174</ArticleId>
<ArticleId IdType="pmc">PMC4724047</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2014 Aug;26(8):3416-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25118245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Nov 25;264(33):20068-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2555340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 18;1444(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(7):1713-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24347463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jan;72(1-2):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(12):3155-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2011;75(1):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2895-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Apr;63(4):744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1991 Jul;1(1):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1844877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 7;310(5745):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Sep;25(9):3434-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24014545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 25;468(7323):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Jun;35(6):663-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25877769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Oct;42(10):1181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11673635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Mar;44(3):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Nov;5(6):735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 May;213(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11523647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2011;6:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 May;46(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11442058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Jan;4(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18830-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Apr;208(2):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1997 Sep;38(9):1039-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9360322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Mar;7(3):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jul;181(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21600394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Mar;101(3):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Apr 17;51(15):3284-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22458969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2012 May;33(5):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22453778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Sep;17(9):348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Regmi, Kamesh C" sort="Regmi, Kamesh C" uniqKey="Regmi K" first="Kamesh C" last="Regmi">Kamesh C. Regmi</name>
</region>
<name sortKey="Gaxiola, Roberto A" sort="Gaxiola, Roberto A" uniqKey="Gaxiola R" first="Roberto A" last="Gaxiola">Roberto A. Gaxiola</name>
<name sortKey="Zhang, Shangji" sort="Zhang, Shangji" uniqKey="Zhang S" first="Shangji" last="Zhang">Shangji Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26614751
   |texte=   Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26614751" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020